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A boundary-layer approximation is used to describe the convective regime in a 
laterally heated vertical slot a t  large Prandtl numbers. The determination of the core 
flow requires the solution of the vertical boundary-layer equations in a rectangle, 
subject to appropriate boundary conditions on each of the four walls. Solutions based 
on a spectral decomposition in the vertical direction allow a comparison with 
experimental and numerical results, and an appraisal of an approximate solution 
frequently used as a basis for stability studies. Both the numerical results and an 
approximate stability argument lead to a simple criterion for the appearance of 
multiple rolls in the slot which appears to be in good agreement with experiments. 

1. Introduction 
The study of natural convection in a rectangular cavity whose lateral walls are held 

at  different fixed temperatures is one of the classical problems of thermal convecfion 
(Nusselt 1909; Batchelor 1954; Elder 1965). For cavities of vertical aspect ratio 
h B 1, which are the main concern of the present paper, heat-transfer predictions are 
of relevance in the thermal insulation of walls and windows, and a more recent 
application is found in the cooling of nuclear reactors. The theoretical description of 
the flow in a vertical slot, based on the Boussinesq approximation, began with the 
analysis of the conductive regime by Batchelor (1954). The transfer of heat across 
the cavity by pure conduction leads to a horizontally stratified vertical core flow with 
a cubic velocity profile corresponding to upward motion in the hotter half of the slot 
and downward motion in the cooler half. It has been shown (Gershuni 1953 ; Rudakov 
1967; Vest & Arpaci 1969; Korpela, Gozum & Baxi 1973) that the flow is unstable 
to travelling waves for fluids of Prandtl number v > 12.7 and to stationary cells for 
v < 12.7. The importance of travelling waves at high Prandtl numbers was first noted 
by Gill & Kirkham (1970) who showed that the critical value of the Rayleigh number 
A (based on slot width) is 

The critical value for stationary instability in the form of transverse rolls is 
A T - 9 . 4 ~ 1 0 8 d  (u+oo). (1.1) 

As - 7.9 x 108 Q, (1.2) 
a result that appears to be valid to within a few percent for all Prandtl numbers. 
Although it has not been verified by asymptotic analysis as v-foo, which would 
involve a critical-layer structure on the cavity centreline, Vest & Arpaci (1969) have 
established it numerically for values of t~ as high as lo8. The result (1.2) is of crucial 
significance in the description of the base flow in the vertical slot, for when A > A, 
the conductive core solution will be destroyed by an imperfect bifurcation associated 
with the penetration of cells from the end zones of the slot; for d > 12.7 stability 
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is lost to a time-dependent state at an even lower value of A. In  either caae, the 
complexities of the resulting flow pattern at supercritical values of A are difficult to 
treat analytically except in the neighbourhood of the critical value where the 
nonlinearity is weak; the stationary transverse rolls which appear at A, are an 
integral part of the solution which allow the endwall boundary conditions to be 
satisfied (Daniels 1985~)  and so cannot be ignored even in the computation of the 
base flow. 

Despite these considerations, experiments by Elder ( 1965) clearly demonstrate the 
existence of a convective regime free from multiple-cell motions. For the high- 
Prandtl-number fluids used in the experiments, the critical Rayleigh numbers A, and 
A, are very large, and the onset of the convective regime produced by the expansion 
of the end-zones into the core of the slot as A increases (Daniels 1985a), can occur 
before either of the conditions (1.1) or (1.2) is met. In  mathematical terms the simplest 
and most relevant model is one for which the Prandtl number is infinite, an 
assumption that is used as the basis for the present study ; according to (1.1 ) and (1.2) 
the conductive solution is then completely stable. There is evidence (Elder 1966) that 
in many respects the resulting solution remains a good approximation at large and 
even moderate Prandtl numbers. The convective regime, where A is of order h, was 
first identified experimentally by temperature data obtained from interferometric 
measurements in air (Eckert & Carlson 1961) and carbon dioxide (Mordchelles- 
Regnier & Kaplan 1963), and it was later that Elder (1965) obtained more extensive 
velocity and temperature measurements for high-Prandtl-number oils. He also 
proposed a theoretical description of the flow based on the assumption of a uniform 
non-zero vertical temperature gradient p and valid, in an approximate sense, near 
mid-cavity height. This has subsequently been used as the base flow for stability 
analyses of the convective regime by Birikh et al. (1969), Gill & Kirkham (1970), 
Hart (1971), Mizushima & Gotoh (1976) and Bergholz (1978). For high-Prandtl- 
number fluids the core flow destabilizes into vertically stacked transverse rolls and 
this complicates the description of the development of the boundary-layer regime as 
A/h+ 00. The formation of thin layers adjacent to each vertical wall of the cavity, 
and which contain most of the vertical mass flux, is suggested by Elder's approximate 
theoretical solution. Gill (1966) later developed a more complete asymptotic structure 
for the boundary-layer regime in which the core flow is vertically stratified and 
consists of a two-way horizontal shear flow entrained and detrained by the vertical 
boundary layers. Further studies of this regime and its stability have been made by 
Gill & Davey (1969), Blythe, Daniels & Simpkins (1983) and Daniels (1985b). 

Numerical simulation of the full cavity flow at particular points in the three- 
dimensional parameter space (A, h, a) has proved the most popular method of 
solution in recent years and many of the experimentally observed phenomena have 
been reproduced. Solutions mainly concerned with the vertical-slot limit (h B 1)  have 
been obtained by Elder (1966), Catton,' Ayyoswamy & Clever (1974), De Vahl Davis 
& Mallinson (1975), Seki, Fukusako & Inaba (1978), Bontoux & Roux (1982) and Lee 
& Korpela (1983). The aim of the present work is to obtain solutions of more general 
validity by utilizing the asymptotic structure of the flow. The contents of the paper 
are as follows. The governing equations and boundary conditions are stated in 92 and 
the asymptotic structure of the solution in the convective regime is obtained in $3. 
This leads to a simplified form of the governing equations in the core region of the 
slot and the novel problem of solving the vertical boundary-layer equations in a 
rectangle, subject to certain conditions on each of the four boundaries. Because of 
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the asymptotic representation and the assumption of large Prandtl number this 
problem contains only one parameter, 

Z = (A/h)i ,  (1.3) 

which may be interpreted as a scaled horizontal aspect ratio (see (3.3) below). For 
very tall cavities (1+0) the conductive regime is recovered while the opposite limit 
(Z+ 00)  corresponds to the boundary-layer regime. Numerical solutions are obtained 
for various values of 1 using a spectral decomposition in the vertical direction ($4). 
The results are described in $5 and a comparison is made with both the conductive 
solution and Elder’s approximate solution. At large values of 2 (I 2 I ,  where 1, k: 11) 
the solution is found to enter an unstable region ($6) where reliable numerical results 
are much more difficult to obtain. The presence of this region is confirmed by a 
stability analysis of the reduced equations and the threshold at I ,  seems to be in good 
agreement with the observed onset of instability in experimental work. The results 
are discussed in $7. 

2. Formulation 
Fluid of density p, kinematic viscosity v, thermal diffusivity K and coefficient of 

thermal expansion a* is contained in a two-dimensional vertical slot 0 < x* < I * ,  
0 < z* < h* and is set into motion by maintaining the rigid vertical walls at different 
constant temperatures T,* and TO* +AT*. The horizontal walls are assumed to be rigid 
and perfectly insulated. The equations that govern the steady two-dimensional 
motion of the fluid in the Boussinesq approximation can be written in a convenient 
non-dimensional form aa 

where V2 = az/a??+az/i3LB. The coordinates f ,  Z, velocity components U, % and 
reduced pressure p have been made dimensionless by the quantities h*, ~ / h *  and 
pKv/h*2 respectively, while the temperature field T* is expressed as 

T* = T,*+AT*T. (2.5) 

The governing parameters in this formulation are the Prandtl number u = V / K ,  the 
Rayleigh number based on the slot height, 

a*g*AT*h*8 R =  
KV ’ 

where g* is the acceleration due to gravity, and the horizontal aspect ratio 

L = I*/h*. (2.7) 
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A stream function $ is introduced, where 

The boundary conditions on the vertical walls of the slot are then 

- a$ 9 = - = 0 (I: = 0, z = L), az 

while on the horizontal endwalls 

(2.10) 

The present theory is concerned primarily with the infinite-Prandtl-number limit 
where the nonlinear inertia terms can be ignored in (2.2) and (2.3). Elimination of 
the pressure then yields the governing equations 

(2.1 1) 

(2.12) 

These equations, together with the boundary conditions (2.9) and (2.10) have 
solutions which possess the property of centro-symmetry (Gill 1966) 

$(Z,Z) = $(L-Z,  1-Z), T ( Z , Z )  = l-T(L-Z, 1-Z),  (2.13) 
- - 

so that in general only one half of the flow domain need be considered. 
An alternative formulation based on the vertical aspect ratio 

h = h*/l* = L-1, (2.14) 

together with the horizontal Rayleigh number 

= RL', (2.15) 
a*g*AT*P 

A =  
KV 

is particularly appropriate in the conductive limit, and the connection formulae 
(2.14), (2.15) can also be used to link the present results with those of other studies 
where required. 

3. Asymptotic structure of the convective regime 

conductive solution of (2.11) and (2.12) is 
When the vertical aspect ratio h is large and A = RL3 is order one, the exact 

- 
T = 4, 3 = &A5?2(l-4)2 (0 < 4 < l),  (3-1) 

where 4 = Z/L, and is valid in the core region 0 < Z < 1. Near the horizontal endwalls 
z = 0 and Z = 1 the vertical two-way flow is turned in roughly square end zones. Here 
the flow is nonlinear (unless A < 1) and is generated by the requirement that the 
solution for 3 in (3.1) must be reduced to zero at the endwall. The properties of the 

- 
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flow have been discussed by the present author (1985a) where i t  is shown that in 
the infinite-Prandtl-number limit, a consistent passive solution (i.e. that matches 
with (3.1)) can be found for all values of A. The imperfect bifurcation associated with 
the stationary conductive instability is avoided and as A+m a more gradual 
penetration occurs in which the end-zone spreads into the core on the vertical scale 
5 - LA = A/h.  Thus the conductive solution is eventually destroyed throughout 
the slot when A is of order h, or more precisely, when 

A / h  ;S 645 (3-2) 
(Daniels 1985a) and this provides a criterion for the onset of the convective regime. 

An appropriate convective parameter I is defined by (1.3), so that 

L = R - ~ Z  (3.3) 
and I may be interpreted as a scaled horizontal aspect ratio. The present theory is 
based on the limit R+ 00 with I finite, and is therefore restricted basically to tall slots. 
In  finite-aspect-ratio cavities (L = O(1)) the convective regime corresponds to 
R = O(1) and no simplification of the governing equations is possible; however, for 
R % 1 the boundary-layer structure proposed by Gill (1966) is contained (to leading 
order) within that considered here, so that the limit of the present theory as 1+ 00 

may be of relevance to the boundary-layer regime in cavities of finite aspect ratio. 
It should be added, however, that a consistent horizontal boundary-layer structure 
has not yet been found for that situation, and it is not clear how the end-structure 
associated with the conductive regime adjusts as L increases to values of order one. 

In the convective regime, where I is of order one, appropriate scalings for the core 
solution as R+ 00 are 

(3.4) 

(3.5) 
where 

Z = R - f x ,  Z=Z. 

From (2.11) and (2.12) the core region 0 < x < I ,  0 < z < 1 is then governed by the 
vertical boundary-layer equations 

a4@ i3T a*T a(T,@) 

- T = T(x,z )+  . . . , $ = M @ ( x , z ) +  . .. , 

(3.6) -- -=- 
ad -32 ax* a ( x , z )  * 

These must be solved subject to the boundary conditions 

\ 9 = - = 0 (z = 0 , x  = I), ax 

T = O  ( x = o ) ,  ~ = i  ( x = z j , J  
(3.7) 

on the vertical walls. At z = 0 and z = 1 the full conditions (2.10) cannot be satisfied 
because the highest derivatives in z do not appear in the reduced equations (3.6). 
Solutions of the vertical boundary-layer equations by approximate integral and 
Oseen techniques described by Blythe & Simpkins (1977) and Gill (1966) can be made 
to satisfy 

and while it is not clear that the exact solution of (3.6), (3.7) has the same property, 
it is now shown that asymptotic forms exist for general values of 1 that are consistent 
with (3.8). 

In view of the centro-symmetry property only the asymptotic structure near z = 0 
need be considered and the results follow the pattern of the vertical boundary-layer 

$ = O  (z=O,z=l), (3.8) 
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analysis of Blythe et al. (1983). As z-+O the solution divides laterally into five distinct 
zones. Near the hot wall, where S = (E-z)/z! = 0(1), there is a Goldstein (1938, 
p. 638) region where the main temperature adjustment occurs. Thus 

T - g(S), $ - zy(S) aa z+O,  
where g = -f” and 

(3-9) 

f v + ~ f f “ ’ = O ;  f = f ’ = O ,  f ” = - 1  ( S = O ) ,  f ” + O  (S-+CO). (3.10) 

This system has previously been considered by Kuiken (1968). The solution has the 
limiting behaviourf- A , S + A ,  as S-too, where A, = 1.021 and A, = -0.738, and 
the vertical velocity associated with A, generates a convection-dominated flow in an 
outer wall region where 7 = (Z-x)/zh = O(1). Here 

T - zAG(v), 1/. - ziF(7) as z+O,  (3.11) 

and it emerges from consideration of the solution near the cold wall that G = K f i ,  
where K is an arbitrary constant and 

F ” ’ + K ( f l - f i ( ~ ~ ) )  = 0; P(0) = 0, P+F(co)  ( ~ + c o ) .  (3.12) 

Setting a, = $’(a) the solution 

T - b,&, @ - U , Z ~  ( z + O ) ,  (3.13) 

where b, = Kab, (3.14) 

is transmitted across the main core region 0 < z < 1 and at  the cold wall, where 
x = 0, generates another convection-dominated zone where i j  = z/zh = O( 1). Here 

T - z&d(.ii), @ - dP(.ii) as z+O, (3.15) 

and = KR, where 

F’”-K(R-.g) = 0; P(0) = P’(0) = 0, P+u, (+-+GO). (3.16) 

The relation between P and 8, which in turn determines that between F and G, 
ensures that the temperature condition at the cold wall is satisfied; this requirement 
arises because a further inner layer, where z / b  = 0(1) and the conductive term in 
the heat equation is significant, is found to have no influence on the leading-order 
behaviour near the wall determined by the solution of (3.16). 

The main results (3.13) are seen to be consistent with (3.8) and to  represent a flow 
at the temperature of the cold wall but with large horizontal velocity and vertical 
temperature gradient ; the horizontal flow is due to the entrainment of fluid near the 
hot wall where there is a rapid rise in temperature. The value of K cannot be 
determined by the asymptotic analysis, although the solution of (3.12) gives 

F’(0) = a@q,, (3.17) 

where p1 = 0.834, so that matching withf’(m) requires that 

ui Ki = Al/q,. 
Thus, making use of (3.14), 

a, = B K 3 ,  b, = &K?, 

(3.18) 

(3.19) 

where B = (A,/q,)9 = 1.832. Presumably K is a function of I ,  and its indeterminacy 
reflects a dependence of the local solution on the global properties of the flow. 
Alternative structures near z = 0, corresponding to K = 0 ,  in which the core region 
is isothermal near the end and the boundary-layer velocity @% N - A ,  at the hot 
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wall drives an z-dependent core solution satisfying +zzzz = 0, do not appear to be 
relevant, and probably imply the attainment of negative temperatures on the colder 
side. In  the boundary-layer regime the structure discussed by Blythe et aZ. (1983) is 
equivalent to the limiting behaviour K+Ko as Z+m, where KO is a numerical 
constant, while consistency with the conductive regime requires that K = O(1-t) as 
Z+O. Further analysis suggests that the above solution can be matched to a 
horizontal boundary-layer structure that allows an adjustment to the full conditions 
(2.10). However, this is rather complicated and is discussed elsewhere (Daniels 
1986). The present paper is concerned with the reduced core problem and the 
behaviour of its solution for different values of the convective parameter 1. It should 
be noted that conditions of the form (3.8) preclude the exact solution (3.1). 

4. Spectral decomposition and numerical solution 

of the spectral decomposition 
Some numerical solutions of the reduced system (3.6)-(3.8) were sought by means 

00 03 

T = z+ I: a,@) sinnnz, + = I: b,(z) sinnnz. (4.1) 

The precise status of this representation is not clear, but if the structure outlined in 
93 is relevant, the fact that each of the functions T-z and + vanishes at z = 0 and 
z = 1 and has a z-derivative that is absolutely integrable from z = 0 to z = 1, validates 
the use of the sine series (4.1). In particular it allows the term-by-term differentiation 
needed in the representation of the z-derivatives in the heat equation (see, for 
example, Tolstov 1962, pp. 75, 137). Substitution of (4.1) into (3.6) and truncation 
at  n = N leads to a set of ordinary differential equations 

n-1 98-1 

bkv = a:, ai+b: = $f, (n = 1,2 ,..., N ) ,  (4.2) 

for the coefficients a, and b,, where $f is a nonlinear function of a,, ah, b,, bh 
(m = 1, 2, . . . , N) representing the contribution of terms proportional to sin nnz arising 
from the product of the two series on the right-hand side of the heat equation. Details 
of the evaluation of q5f are given by Daniels & Simpkins (1982). 

At the cold wall, the boundary conditions (3.7) require that 

a, = 2( - l)"/nn, b, = b; = 0 (z = 0), (4.3) 

while the three remaining conditions are obtained from considerations of centro- 
symmetry. This avoids the computation of the flow in < z < Z and, from (2.13), 
implies that 

From (4.1) this is equivalent to the requirement that if n is odd 

+(x,z) = + ( Z - X ,  1-z), T(z,z) = l-T(Z-z, 1-2). (4-4) 

a, = bk = b: = 0 on z = 3, 

a; = b,  = = 0 on x = i l ,  
while if n is even 

and in either case this completes the six boundary conditions needed to  solve (4.2). 
Since q5: = 0 an analytical solution is possible for the single-mode system obtained 
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1 
3 
5 
7 
9 

11 
13 
15 
17 
19 

0.6547 
0.5467 
0.5935 
0.5674 
0.5835 
0.5731 
0.5799 
0.5755 
0.5783 
0.5764 

1 
0.3270 
0.9041 
0.3989 
0.8436 
0.4521 
0.7965 
0.4942 
0.7594 
0.5219 

TABLE 1. Convergence of the Fourier series for 9 and aT/az at the centre of the slot, with 1 = 8 
and N = 20: the partial sums of the series are shown. Increments of the Newton iteration are within 
a pre-relaxation tolerance of 3 x lo+. 

when N = 1, and this provides an initial guess for the computation of the solution 
at higher truncation levels. The solution is given by 

(4.7) 

X X x x  
4 2  4 2  4 2  4 2  

b, = C+C+ cosh-cos-+C- sinh-sin-, 

a, = -{(C--C+) 1 s i n h a  X c o s a -  X 
4 2  

where X = x-41, 

C - -e (cosh-  1 1 1 cos-) 1 
sin - + sinh - * -  xc 2 4 2  2 4 2 -  2 4 2  2 4 2 ’  

1 C = -  (sinh-+sin- 
4 2 x c  4 2  4 2  

(4.9) 

and c = sinha ( 1 / 2 4 2 )  + sine ( 1 / 2 4 2 ) .  The solution for higher values of N was obtained 
using Newton’s method to predict new values of the variables a,, b, at each stage 
of an iterative scheme. The equations were reduced to first-order form by introducing 
additional variables and discretized using central differences in the 2-direction. The 
Newton increments for the nth mode were calculated by a Gauss-Seidel technique 
regarding all other modes as fixed at their most recently computed values. The new 
values were then also subjected to a relaxation before the next higher mode was 
calculated. The overall procedure consisted of setting N = 2 with (4.7) and 
a, = b, = 0 as initial guesses, obtaining reasonable convergence at this level and then 
increasing N using the previously calculated modes, along with U, = b, = 0, as new 
initial guesses. Most solutions were computed with maximum truncation levels 
N = 20 or 30, and 20 steps across the half-slot width. Tests with 10 and 40 steps 
indicated that for moderate values of 1 this step size produced an error of less than 
f % in the value of $ at the centre of the slot. At high truncation levels it was found 
necessary to use quite severe under-relaxation, as in the vertical boundary-layer 
calculations described by Blythe et al. (1983). 

Tables 1 and 2 contain information concerning the convergence of the Fourier series 
and the effect of the truncation. The slow decay of a,(O) with n, as given by (4.3), 
is associated with the discontinuity in T at x = 0, z = 1 (indeed, term-by-term 
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N W )  a*(#) W )  a&) *(Y,t) A 
- 0.4850 1 0.4850 

5 0.6211 0.0929 0.0692 0.0306 0.5524 
- - 

10 0.6446 0.1029 0.0984 0.0418 0.5741 10-8 
20 0.6547 0.1071 0.1080 0.0459 0.5764 3 x  loh6 
30 0.6581 0.1085 0.1109 0.0471 0.5796 5x lod4 

TABLE 2. Convergence of the solution aa a function of truncation level N for 1 = 8. A is the 
pre-relaxation tolerance of the increments of the Newton iteration. 

differentiation of the series for T is not valid at x = 0) and this generally leads to a 
very slow convergence of the Fourier series for i3T/i3z and a+/& when z > 0. In  the 
circumstances, the convergence of the series for the basic functions T and + was found 
to be remarkably good, and estimates of i3T/i3z can be obtained either graphically 
from T or by extrapolation based on the mean of the partial sums of the series for 
i3T/az (see table 1). 

5. Results for the stable region Z < 1, 
At low values of the convective parameter (1 = 2,4,  figure 1) the numerical results 

exhibit a Gibbs phenomenon caused by the regions of rapid adjustment near the 
endwalls at z = 0 and z = 1 which characterize the conductive regime. These have 
a vertical scaling proportional to Z4 zw Z+O. Away from the endwalls the conductive 
core solution 

+ - #S (y(l-;y (1 -4 l), (5.1) 

is accurately reproduced (figures 1-3). As Z increases from 4 to 6 there is a rapid rise 
of the vertical temperature gradient in the slot, associated with the onset of the 
convective regime (figure 4), and at 1 = 8 the streamline and isotherm patterns (figure 
3b)  indicate significant horizontal motion and a strong vertical stratification on the 
centreline of the slot. It was found that results exhibiting clear convergence could 
be obtained for values of 1 as high M 11, where the stream function at the centre of 
the slot appears to approach a maximum value (figure 5) .  The vertical temperature 
gradient at the same position reaches a maximum at about 1 = 6.5, and thereafter 
the maximum gradient on z = t moves to equal and opposite locations closer to each 
vertical wall (figure 6). Thus a vertical gradient averaged over the width of the slot 
is subject to significantly less variation than that of figure 4. Figure 7 shows the 
variation of the Nusselt number representative of the heat transfer out of the cold 
wall. This is defined by 

X 
T - -  

1 ’  

where (5.3). 

In  the conductive limit, Nu - 1-’ as Z+O, from (5.1). 
Asymptotes for the boundary-layer limit (Z+ 00) are also shown in figures 4,5  and 

7. These are the values predicted by a solution of the vertical boundary-layer 
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0.6 

0.4 

* 

0.2 

0.5 
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1 0.5 
z 

1 

FIGURE 1 .  Stream function and temperature profiles on the centreline of the slot, z = 41, 
for 1 = 2, 4, 6, 8,  11. 

0.25 

X I 1  
0.5 

FIGURE 2. Stream function (-) and temperature (---) profiles at mid-cavity level, z = i, 
for 1 = 4, 8, 11 .  Conductive solution for 1 = 4 also shown (0). 

equations using a numerical method similar to that described here and reported by 
Blythe et al. (1983). The main difference is that the vertical profiles of stream function 
and temperature are required to approach x-independent forms at the edge of the 
layer. Thus the boundary conditions (4.5) and (4.6) are replaced appropriately and 
the solution is obtained using an artificial outer boundary at x = x, ; the asymptotes 
shown in the figures are for x, = 8. It has not been possible to obtain solutions for 
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Z 

0.5 

I 

T = 0.4 

2 
X 

\ 

X 

z 

0.5 

T = 0.4 

4 
X 

+ = 0.5 

- 

4 
X 

FIQURE 3. Streamline and isotherm patterns for (a) 2 = 4 (AT = 0.1, A$ = 0.03), 
(b)  I = 8 (AT = 0.1, A~ = 0.1). Half the slot is shown in each caae. 

larger values of x, (e.g. z, = 12) due to stability problems (see also below) although 
the value z, = 8 is at least large enough for the oscillatory decay of the boundary- 
layer solution (cf. (5.14) below) to be identified; furthermore the results agree well 
with numerical and experimental evidence (see Blythe et al. 1983). In figure 4, 
experimental measurements of the vertical temperature gradient at the centre of the 
slot are seen to overshoot their limiting values, consistent with the present 
calculations, while in figure 8 a comparison of the vertical velocity profile at I = 11 
with that obtained experimentally by Elder (1965) at a comparable value of I 
indicates excellent agreement. 

Further results shown in figures 5 and 8 give a comparison with an approximate 
solution obtained by Elder (1965). This solution is based on the neglect of the 
horizontal velocity component and therefore, it is argued, is most relevant near 
mid-cavity level, z = t .  The solution is written 

T = B(z - t )+  m9, $ = J(4, (5.4) 

where /3 is the (externally specified) vertical temperature gradient; this constant 
gradient may be compared with the real z-variation evident in figure 6. Substitution 
into the governing equations (3.6) gives 

p v  = P, P+pp = 0, (5.5) 
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0.6 - 
X 

d ------- 
aT 
- (tl. t) 

0.4 - 

0.2 - 

4 8 12 
I 

4 8 
I 

X 

12 

FIGURE 4. The vertical temperature gradient at the centre of the slot as a function of 1. The broken 
curve is the large4 asymptote obtained by Blythe et aZ. (1983); the gradient is expected to be 
exponentially small in the conductive limit (Z+O). Experimental results are due to Hart (1971) 
0, h = 37, u = 6.7. Numerical results due to Elder (1966) x , h = 1, Q = 1, and Lee & Korpela 
(1983) A, h = 15, u = 20 are also shown. 

FIGURE 5. The stream function at  the centre of the slot as a function of the convective parameter 
1. Broken curves show asymptotes b a d  on the conductive solution (5.1) (Z+O) and the 
boundary-layer calculations of Blythe et aZ. (1983) (Z+ m). The approximate theoretical solution 
(5.12) for B = 4 is also shown (a). 
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FIGURE 6. The vertical temperature gradient profile at mid-cavity level, z = 4, 
for 1 = 4, 6, 8, 10, 11. 
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1 

FIQURE 7. The Nusselt number Nu aa a function of 1. Broken curves show aaymptotes based on 
the conductive solution (6.1) (Z+O) and the boundary-layer calculations of Blythe et al. (1983) 
(Z+co). Numerical results due to Catton et d. (1974) 0, A = 16, rr = m; Elder (1966) X ,  h = 1, 
Q = 1 ; and Rube1 t Landis (1969) A, A = 6, u = 2 x loa are also shown. 

and since J must be even and p-i odd about x = +? the required solutions are 

where 

and 

P-i = s(a), J = zs!qX) (-4 G X G i), (5.6) 

!?'(X) = y+{D + D, cosh y a  COB ya+ D- sinh ya sin y a ,  (5-7) 

@(a) = 2(0- -D+)  sinhya c o s y ~ - 2 ( D + + D - )  coshyg sinya, (5.8) 
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FIGURE 8. Vertical velocity profile at mid-cavity level, z = 4, for 1 = 11. Experimental results due 
to Elder (1965) x , h = 18.6, A = 4 x lo6 (1 % 12), K = 1.05 x lov3, and the approximate theoretical 
solution (5.6) with /l = 4 for 1 = 11 (0) and 1 = 12 (A) are shown for comparison. 
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FIGURE 9. The base profiles $ = 13P, d$/dx = --25, = PIP’ and = 8+f aa functions of xll for 
various values of 1 with /l = f. (The univeraal profiles Y,  !€”, 8 are easily obtained by replacing 1 
with %.) 
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are dependent on the single parameter 

y = ( ~ ) t l  = (gg, (5.9) 

and the normalized horizontal coordinate a = X / l  = ( x - i l ) / l .  The boundary con- 
ditions = $ = J' = 0 on x = 0 determine the three arbitrary constants in (5.7) and 
(5.8) as 

(5.10) D ,  = -&(coshb s i n ~ k s i n h b  cosb) ,  

1 
16d = -(sinhy+siny), (5.11) 

where d = sinh2 b + sin2 ~. 
It is commonly assumed that /3 = i, this value being consistent with the experi- 

mental measurements made by Elder (1965). It is also in good agreement with the 
value 0.52 obtained by numerical solution of the vertical boundary-layer equations 
(Blythe et al. 1983) as well as numerical solutions of the full equations (e.g. Lee & 
Korpela 1983). The parameter y is a combination of the vertical temperature gradient 
/3 and the convective parameter 1 ;  profiles of the approximate solution in figure 9 show 
the development from the conductive regime (y + 0) to the boundary-layer regime 
(y+co). According to this solution the value of the stream function at the centre 
of the slot is given from (5.6)-(5.11) as 

(5.12) 

This is compared with the computed results in figure 5 for /3 = +. Note that 

J(+z)  - ( 4 / 3 ) - ~ ( 1 - 2 e - ~ ~ { c o s ~ + s i n ~ } )  as y-too, (5.13) 

which predicts that $(+I!) +0.595 when /3 = +. This value compares well with that of 
0.59 predicted by the numerical solution of the vertical boundary-layer equations 
(Blythe et al. 1983). The approximation to the profile in the boundary layer near the 
cold wall obtained from (5.7) is 

J - (4/3)-9 (i-e-y~{cosy~+sinyf)) ,  (5.14) 

where f = x / l  and this predicts that $ has a first maximum as a function of x at 
x = d / y  = 7t(4//3)f which is approximately 5.28 when /3 = i; this also compares well 
with the result obtained by Blythe et al. (1983, figure 5). 

In summary the approximate theory with /3 = + is seen to provide a surprisingly 
accurate estimate of the mid-cavity flow properties over a wide range of values 
of 1. Although the vertical temperature gradient at the centre of the slot varies 
significantly from the value + (figure 4), the good agreement is probably due to the 
proximity of this value to an averaged gradient across the width of the slot (figure 6). 

6. The unstable region l > 1, 
For I 2 11 the numerical calculations entered an unstable region where the addition 

of an extra mode (e.g. the 18th for 1 = 12 and the 9th for 1 = 16) resulted in an abrupt 
amplification from the single-cell solution into multiple-cell states of the type shown 
in figures 10 and 11. Although these solutions have Newton increments less than 
(after many iterations) the convergence of the scheme and the effect of mode 
truncation could no longer be guaranteed with complete confidence. A different 
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FIGURE 10. Streamlines of typical flow computations in the unstable region: 
(a) I = 12, ( b )  16, (c) 24, (d) 40. Half the slot is shown in each case. 
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FIGURE 1 1 .  Stream function and temperature profiles on the centreline of the slot, x = 41, 
in the unstable region and corresponding to flow patterns shown in figure 10. 

numerical approach may be needed to obtain accurate solutions in this region, but 
the sudden change in character of the solution and its possible connection with the 
observations of Elder (1965) and others seems worthy of note. It should be added 
that for sufficiently low truncations the roll instabilities are avoided, presumably due 
to the absence of the unstable vertical wavelengths. Thus clear convergence could 
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FIGURE 12. The stream function and vertical temperature gradient at the centre of the slot as 
functions of 1 for the truncation level N = 3. The broken lines show asymptotes predicted by a 
boundary-layer calculation with x, = 12. 

always be obtained when N = 3, and a single-cell circulation is produced for all values 
of 1. In the conductive limit the behaviour of the vertical temperature gradient shown 
in figure 12 reflects the inadequacy of the truncated representation, but at higher 
values of 1 the results compare favourably with those of figures 4 and 5 and allow 
what may be a crude approximation to the single-cell solution to be traced into the 
boundary-layer regime (1 -+ 00). Indeed, it was confirmed that the solution approaches 
that obtained by solving the boundary-layer equations in the region 0 d x < x, with 
the assumption of appropriately symmetric, and x-independent core forms at 2,. This 
is the problem solved by Blythe et al. (1983) with x, = 8 although here, taking N = 3, 
it was found that stable solutions could be obtained with x, as high as 12 or more. 

Support for the existence of the critical point 1, of the reduced system (3.6)-(3.8) 
is provided by a stability analysis of the approximate base flow (5.4). At infinite 
Prandtl number travelling-wave solutions can be ignored (Gill & Kirkham 1970), and 
neutrally stable stationary solutions can be found by setting 

where C.C. denotes complex-conjugate, all4 is the wavenumber in the vertical 
direction and no account is taken of the boundary conditions at z = 0 and z = 1. 
Substitution into (3.6), (3.7) and linearization yields the stability equations 

+*v = 8’, 8” = ia(e’+ - Yrt9)-4y4+’, (6.2) 

with + = + ‘ = e = o  o n X =  ++. (6.3) 

9 = eik(+o+i+,), 8 = eik(8,+it9,), (6.4) 

Solutions for real values of a can be expressed in the form 
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Y 
FIGURE 13. The wavenumber a, and the corresponding roll number No = a/2xZ4 = ap/8xyl for 

= 4, aa functions of y .  The broken curves (---) are the asymptotes given by (0.18) and (6.20). 

where k is an arbitrary constant, #,,, #e, 8, and 8, are real functions of 2 and the 
subscripts refer to even and odd solutions (see Vest & Arpaci 1969). However, the 
computation of three linearly independent solution pairs 8,# from g, = -a to g = + 
by a RungeKutta method and the location of the zeros of the 3 x 3  complex 
determinant formed from the boundary conditions at g = f leads to the determi- 
nation of a at a given value of y in a straightforward manner. Real solutions for a 
are found to exist for y 2 yc x 6.3 and are shown in figure 13. The behaviour a+ 00 

as y+yc+ suggests that the point yc may be the critical point for the instability 
of shorter wavelengths z = O(R-f) also. These are precluded within the context of the 
reduced system, which neglects rapid variations in the z-direction, but it seems likely 
that the present results provide the lower branch of a neutral stability curve in the 
(y, a)-plane, possibly stemming from yc and with an upper branch corresponding to 
the short-wavelength instabilities. The neutral curve in figure 13 is consistent with 
the long-wavelength asymptote of solutions obtained by Bergholz (1978). 

The critical point yc can be found by considering the limit a+ 00. An ‘outer’ 
solution is assumed in the form 

Q - W), 0 - &Q, (6.5) 

and substitution into (6.2) gives 
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$ = & = o  o n X = f i ,  (6.7) 
The conditions 

are sufficient to ensure the correct behaviours of both the velocity and temperature 
fields at the walls without the need for local thermal boundary layers at leading order. 
A t  the centre, X = 0, a singularity arises if 4 is finite, due to the vanishing of the 
base-flow velocity !P', and a critical layer forms. In 2 < 0 the solution for 6 can be 
written as 

where ,ul and p2 are complex constants and fl and f2 are uniquely defined by 
e' 

el f Y = - f  +1; f 2 = f ; = f ; = o  

f Y = + ;  f 1 = f i = 0 ,  fT=1 ( X = - t ) ,  (6.9) 

(X = -4). (6.10) !F2 
Since the base profiles 8' and Yare even, the appropriate solution in X > 0 is 

4 = v l f l ( - m + v P f 2 ( - 9 ) ,  (6.11) 
where v1 and v, are complex constants. As X + O - ,  fl and f2 have general forms 

fl , 2  - G1,2 + 4, 2 a + X 2  { 91, 2 9 In 1x1 + El,%} + 4, 2 p, (6.12) 
(0) 

where, from (6.9), (&lo), 

(6.13) 

Consideration of the flow across the critical layer, where 
bridging conditions, two of which are 

= O ( a - f ) ,  leads to four 

(6.14) 
& l + V l ) g l + 0 1 2 + v 2 ) 6 a  = 0, 

& 1 + v 1 ) d 1 + ~ 2 + V 2 ) d " 2  = 0. 

The solution of interest is the one for which 

de t (2  2) = $l = 0; (6.15) 

other possibilities correspond to regular solutions for 4 that vanish at X = 0 and do 
not generally correspond to real values of a. Thus yc is determined by the requirement 
that there is a solution of (6.9) for whichfi(0) = 0. The properties of 8' and Y' confirm 
that the lowest value of yc occurs in the range yo < yc < yb ,  where yo = 4.73 is the 
point at which the horizontal base temperature gradient fist becomes negative (i.e. 
8'(0) = 0), and yb = 7.85 is the point at which regions of reversal of the vertical base 
flow first occur (i.e. Y"(0) = 0). A finite-difference computation of its value from (6.9) 
gave yc = 6.30, and the function fl is shown in figure 14. 

The form of the neutral curve at large values of y can also be determined 
analytically. The base flow and horizontal temperature variation occur entirely in 
boundary layers with thickness of order y-' close to the vertical walls. Near the cold 
wall 

'Y' - b-2e-z sinX, e - -+-x coax, (6.16) 

where 1 = y2, and the perturbation functions cj4 and 0 have local scalings 

cj4 - y--s$(X), 8 - B(X), (6.17) 
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FIQURE 14. The outer function fi at the critical point yc. 

with a - y4h. (6.18) 

The full stability equations (6.2) hold within the boundary-layer regions but the 
hot-wall layer can be ignored by invoking the symmetry conditions (6.4) which, 
together with (6.2), imply that in the core 

e - Beik, 4 - iy-SAseik, (6.19) 

where A, E and k are real constants. In  the cold-wall layer the final problem is a limiting 
form of that discussed by Daniels (1985b) and with the outer constraint $+iA8 as 
x-+ 00 given by (6.19), can be solved to give 

A = -0.65, h = 152.3. (6.20) 

The disturbance corresponds to a vertically stratified, horizontal flow across the core 
which is entrained and detrained by the boundary-layer flow near each wall, forming 
large rolls which span the region between the vertical walls. Smaller regions of closed 
circulation centre on the maximum overall stream-function locations which occur 
within each boundary layer. 

7. Discussion 
The present asymptotic theory of high-Prandtl-number convection in a vertical 

slot suggests that a boundary-layer approximation is useful for values of the 
convective parameter I = (A/h)f  less than a critical value of about 11. Solutions 
obtained by spectral decomposition show the development from the conductive 
regime, and at the centre of the slot predict a vertical-temperature-gradient 
maximum near E = 6.5 and a stream-function maximum near 1 = 11. The latter 
behaviour heralds the onset of an unstable region where even the reduced system 
appears subject to an instability in the form of transverse rolls. Numerical evidence 
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U h A , x  10-5 (A& 

l@ 19 3.0 11.2 
900 20 3.7 11.7 
480 15 1.8 10.4 

104 4 0.42 10.1 
105 10 2.4 + 12.4+ 

480 15 3.0 11.9 
los 15 4.0 - 12.8- 

Author 
Elder (1 865) 
Vest & Arpaci (1969) 
Seki et al. (1978) 
Simpkins & Dudderar (1981) 
De Vahl Davis & Mallinson (1975) 
Bontoux & Roux (1982) 
Lee & Korpela (1983) 

Description 

experimental 
experimental 
experimental 
experimental 
numerical 
numerical 
numerical 

TABLE 3. The onset of secondary motion for large-Prandtl-number fluids. 

of this is supported by a stability analysis baaed on an approximation to the base 
flow near mid-cavity level which, taking p = t,  predicts destabilization at  

The critical value yc = 6.30 obtained in 36 is virtually coincident with the attainment 
of the first maximum of the (approximate) stream function &Z), which, from (5.12) 
and assuming fl  to be constant, is at  y = 271 (further maxima and minima occur at 
integer multiples of 271). At the critical point the stability calculations (and the 
numerical evidence - figure 10a) indicates the importance of wavelengths much less 
than the height of the slot and the need, in a complete analysis, to retain the vertical 
diffusion terms in the governing equations for 1 2 1,. Taking /3 = t the minimum value 
of a given by the neutral curve of the present long-wave stability theory corresponds 
to about three vertically stacked anticlockwise rolls at  large values of 1 (figure 13). 
The numerical scheme generally produced five, but while the discretization of the 
spectrum by the end conditions at  z = 0 , l  might be expected to provide an additional 
constraint, realistic comparisons are not really possible. The stability theory is linear 
and also dependent on an approximation to the base flow that becomes less relevant 
at  large values of 1 where the real flow is strongly influenced by the endwalls. 

The present theory supports the view that for high-Prandtl-number fluids second- 
ary motions arise from conditions prevailing near mid-cavity level where the 
horizontal flow is weakest, consistent with Elder’s (1965) comment that the end-zones 
remain regions of strong damping. Although the stability analysis needs to be 
extended to account for both short-wavelength disturbances and the spatial variation 
of the base flow, it is of interest to compare the criterion (7.1) with experimental 
results for high-Prandtl-number convection. Elder (1966) concluded from his experi- 
ments that the threshold point for a vertical slot of aspect ratio h may be defined 
by a critical Rayleigh number 

whereas the present results suggest that a more appropriate measure is 
A = 3~ 106f30%, (7.2) 

zc = (A/h)f x 11 (7.3) 
A comparison with various experimental and numerical results for a range of values 
of A and h supports this view (see table 3) and the need for the large error margin 
in (7.2) is not surprising. 

It is stressed that an alternative approach is needed to obtain accurate numerical 
solutions for 1 > lC, and to determine whether the multiple-cell solutions (figure 10) 
are simply transient states triggered by the destabilization of the mid-cavity flow; 
a ‘roll-swallowing ’ sequence (Bontoux & Roux 1982) could conceivably lead to a final 
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FIGURE 15. The first three real eigenvalues d = kia of the system (6.2), (6.3). 

configuration in which regions of recirculation are confined to mid-cavity level, as 
in numerical calculations by Rube1 & Landis (1969) and in keeping with the ultimate 
boundary-layer structure proposed by Gill (1966) and Blythe et al. (1983). It seems 
more likely, however, in view of the stability analysis, that the vertical boundary- 
layer system does admit multiple solutions for Z > I, and that only one of these 
approaches the aforementioned boundary-layer solution as I +  00. It may be added 
that a converged boundary-layer solution containing three cells has been obtained 
numerically using the present spectral approach with z, = 12 and N = 10, but its 
relevance must remain in doubt at this level of truncation, and certainly boundary- 
layer solutions based on Oseen and integral methods (Gill 1966; Blythe & Simpkins 
1977) show no signs of steady multiple-cell states, although both methods involve 
approximations that may exclude such solutions. 

A final possibility is that multiple-cell states arise smoothly as 1 increases through 
l,, with no ‘simple’ base state for 1 > I, until the boundary-layer structure evolves 
as Z+ a. Such a smooth evolution would be expected if the real solutions +a of (6.2), 
(6.3) had evolved from roots with non-zero imaginary part for y < y,, but this is not 
the case. The system (6.2), (6.3) has a family of roots 

a = f i &  (6 real), (7.4) 

for all values of y (figure 15). They stem from the real family of decaying 
eigensolutions which characterize the flow in the conductive regime near each 
endwall, and the corresponding eigenvalues ai = 2.58 x lo9, 2.31 x lo4, 5.76 x lo4,. . . 
(Daniels 1985a) are the limits of those shown in figure 15 as y+O. The real roots f a  
arise instead from the passage to zero, aa y+yC - , of a pair of complex roots of the 
complete stability problem equivalent to (6.2), (6.3) in which vertical diffusion is 
included; they therefore only arise in the vertical boundary-layer model for y > yc 
and are then additional to the complete set (7.4) that already, in principle, provides 
the adjustment to the end boundary conditions. Their appearance at yc therefore 
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seems most likely to correspond to a bifurcation and subsequent non-uniqueness of 
the steady solution. 

The author is grateful for useful discussions with Professor P. A. Blythe. 
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